Revolutionary device creates electricity from snowfall

Scientists from University of California, Los Angeles and McMaster University have invented a first-of-its-kind nanogenerator that can generate electricity using falling snow.

The thin device works by harnessing static electricity: positively-charged, falling snow collides with the negatively-charged silicone device, which produces a charge that’s captured by an electrode.

“You separate the charges and create electricity out of essentially nothing,” Richard Kaner, who holds UCLA’s Dr. Myung Ki Hong Endowed Chair in Materials Innovation, said in a press release.

“The device can work in remote areas because it provides its own power and does not need batteries,” he said, explaining that the device was 3D printed, flexible and inexpensive to make because of the low cost of silicone.

The team, which also included scientists from the University of Toronto, published their findings in Nano Energy journal last year, but a few weeks ago, they revealed the device’s more practical uses.

About 30 per cent of the Earth’s surface is covered by snow each winter, which can significantly limit the energy generated by solar panels.

So the team thought: why not simply harness electricity from the snow whenever the solar panels were covered?

Integrating their device into solar panel arrays could produce a continuous power supply whenever it snows, study co-author and UCLA assistant researcher Maher El-Kady explained.

The device also serves as a weather-monitoring station by recording how much snow is falling and from where; as well as the direction and speed of the wind.

The team said they also want to incorporate their device into weather sensors to help them better acquire and transmit electronic signals. They said several Toronto-based companies -- which they couldn’t name -- have expressed interest in partnering with them.

But the device’s arguably larger potential use is being integrated into technology to monitor athletes and their performances during winter sports, such as hiking, skiing and cross-country skiing.

Up to now, the movement patterns used during cross-country skiing couldn’t be detected by a smart watch, but this device may be able to.

Scientists such as Kaner believe the technology could usher in a new era of self-monitoring devices to assess an athlete’s performance while they’re running, walking or jumping.

To view article: